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Providing care for the elderly has been considered a significant chal-
lenge for modern medicine. As age progresses, diseases become more 
frequent and severe than those observed at a younger age. This is par-
ticularly relevant for infectious diseases, typical in the elderly and usually 
associated with poor outcomes. Moreover, when persisting and diffus-
ing into the bloodstream (i.e. bacteremia), these infections keep up with 
the demand for immune cells’ response and consequently increase the 
concentration of inflammatory markers systemically. This phenomenon 
is known as “inflammaging”, which potentially triggers or facilitates the 
development and progression of several age-related disorders, such as 
cancer, cardiovascular and neurodegenerative diseases. Periodontal dis-
ease is one of the most prominent among the disparate number of causal 
factors responsible for bacteremia and low-grade systemic inflamma-
tion in the aging population. This inflammatory disorder is triggered by 
a dysbiosis of certain bacterial species that activates a massive local 
toxic deleterious immune response leading to non-reversible damage of 
supportive tissues surrounding the teeth. In chronic, oral pathogens and 
their toxic factors can penetrate the bloodstream contributing to system-
ic inflammation. Based on this premise, it seems evident that maintaining 
oral health in the elderly is vital not just for owning healthy mouth but 
also because it contributes to a healthy aging. This review provides an 
updated account of molecular insights into the bidirectional association 
between oral health and “successful” aging.

Key words: periodontitis, immunosenescence, inflammaging, aging, 
oral health

INTRODUCTION

In the last century, the portion of older adults globally has increased rap-
idly, with the number of people aged over 60 years old reaching almost 
22% in 2050 1. Of course, prolonged life expectancy is associated with an 
augmented risk of chronic degenerative disorders frequently observed in 
older populations, with national healthcare systems facing this evolution 
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with enormous costs  2-4. According to Franceschi et 
al.  5, centenarians representing a model of “success-
ful” or healthy aging usually exhibit medical histories 
with remarkably low incidence rates of common age-
related disorders such as cardiovascular-related dis-
eases (CVDs), diabetes, Parkinson’s and Alzheimer’s 
disease, and cancer  4,5. Thus, great interest has been 
raised in understandingthe molecular basis of success-
ful aging and identifyinga potential strategy to achieve 
it. What differentiates the unsuccessful aging process 
from a successful one is undoubtedly a different re-
sponse to a condition known as “inflammaging”. This 
low-grade chronic inflammatory process, resulting from 
the long-term stimulation of the innate immune system, 
contributes to the onset of age-related pathologies. In 
contrast, in subjects who age successfully (with no co-
morbidities), like centenarians, it has been suggested 
that this inflammatory status is counterbalanced by anti-
inflammaging mechanisms 6-9. Of note, several are the 
cellular and molecular mechanisms involved in inflam-
maging, and among these, dysbiosis (an imbalance in 
the host-microbial community) appears to play a pivotal 
role  6,10. This phenomenon is facilitated by physiologic 
and pathophysiologic changes occurring with aging, like 
an impairment in immune system functionality (immu-
nosenescence) that enable host-microbiome alteration 
and contribute to the incidence and severity of infec-
tions, such as periodontitis  11-13. Global data indicate 
that these oral disorders are highly prevalent among 
older adults (60 years and older), and due to their in-
fective and inflammatory nature, they represent a sig-
nificant public health issue in aging populations 14-17. For 
instance, recent studies depicted a catastrophic situa-
tion with 68% of adults ≥ 65 years of age affected with 
chronic periodontitis in the USA 18,19. In addition, several 
experimental and clinical data demonstrated that various 
age-related systemic diseases are strictly associated (in 
a bidirectional manner) with periodontitis 20,21. Hence, it 
is more than plausible to speculate that controlling the 
development and progression of such oral disease may 
significantly decelerate biological aging 22. 
Herein, in this Review, we discuss how periodontitis 
influences overall health status, representing a causal 
risk factor of accelerated aging. In particular, we mainly 
focused on the strict causal relationship between im-
munosenescence and periodontal disease and the 
consequent related effects on the development and 
progression of age-related disorders.

IMMUNOSENESCENCE AND INFLAMMAGING

Biologically, aging is associated with a physiologi-
cal process of tissue degeneration related to chronic 

low-grade systemic inflammation  6,23,24 is character-
ized by high circulating cytokine levels such as tumor 
necrosis factor α (TNF), interleukin (IL)-6 and IL-1, and 
anti-inflammatory mediators, including the IL-1 recep-
tor antagonist, and the soluble TNF receptors 1 and 
2, despite the absence of general pathophysiological 
stress or infection 25,26. This condition, known as inflam-
maging, has been associated with accelerated aging 
and age-related disorders that increase morbidity and 
mortality in the elderly population 27,28. Among the nu-
merous processes implicated in inflammaging, immu-
nosenescence is for sure one of the most significant 
pathological drivers  29. The existence of this process 
involves both cells of adaptative immunity like T and 
B cells and those of innate immunity, including natural 
killer (NK), neuthrophils, monocytes and macrophages. 

T-cells

T-cells are involved in adaptive immunity and are criti-
cal for generating and maintaining long-term immuno-
logical memory and protection 30,31. These cells direct 
robust humoral immunity (CD4+ T cells) and mediate 
cytotoxic responses (CD8+ T cells). However, as age 
progresses, some well-established defects in these 
populations of T-cells occur 30,31. For instance, as dem-
onstrated by Cho, with increasing age, hematopoietic 
stem cells (HSCs), have a decreased capacity to pro-
duce lymphoid progenitors (T, B, and NK cells) and are 
more prone to generate myeloid progenitors (megakar-
yocytes, erythroid, myeloid and some dendritic cells) 32. 
Consequently, the HSCs are more prone to generate 
myeloid progenitors (megakaryocytes, erythroid, my-
eloid, and some dendritic cells) 32. Moreover, in humans 
and mice, the involution of the thymus, a specialized 
central lymphoid organ located in the thorax, has been 
associated with a decreased output of naïve T cells 31. 
As a result, circulating naïve T-cells undergo homeo-
static proliferation into unprimed memory-like CD8 T 
cells, called “virtual memory” (VM) cells 33,34. 
Further to these factors, significant evidence suggests 
that persistent latent infections (i.e. cytomegalovirus 
[CMV]) are associated with the deleterious modifica-
tions observed in the T-cell compartment with age 35,36. 
Indeed, studies reveal that chronic CMV infection im-
pacts the memory compartment and stimulates the 
expansion of CMV-specific memory CD8+ T-cells 37. 
Altogether these mechanisms lead to a decreased re-
sponse to infections and reduced vaccination efficiency 
in the older population. Most of these effects have been 
attributed to the age-associated loss in T cells of the 
CD28 molecule  38-41. This costimulatory molecule in-
teracts with ligands expressed on antigen-presenting 
cells (APCs), stimulating T-cell activation and prolif-
eration 41. From a functional standpoint, loss of CD28 
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leads to several upstream and downstream outcomes, 
including decreased ability to secrete IL-2, reduced T-
cell repertoire diversity, decreased telomerase activity, 
proliferation, and survival upon antigen exposure  42-45. 
Although the mechanisms responsible for the loss in 
CD28 with age are not fully comprehended, several 
studies suggest a potential implication for TNF-α. In-
deed, this factor can significantly inhibit the expression 
of CD28, and its levels are increased in older adults with 
chronic inflammaging 46. 
In addition, as demonstrated by Patrick et al., the 
downregulation of CD28, along with the reduced ex-
pression of CD27, is accompanied by the loss of human 
telomerase reverse transcriptase (hTERT), leading to a 
decreased telomerase activity and increased telomers 
frailty 47.
Of note, memory CD8+ T cells also acquire CD57, a 
glycoepitope well-recognized marker of replicative 
senescence 48, and as reported by Martínez-Zamudio 
et al. develop high levels of senescence-associated 
β-galactosidase (SA-βGal) activity 49. 

B-Cells

B-cells are responsible for developing long-lasting pro-
tective antibody responses and immunological memory 
following infections or vaccination. Hence, a defect 
in the function of these cells negatively impacts their 
capacity to trigger a correct primary or secondary re-
sponse 46,50. B cell development depends on lymphoid-
biased hematopoietic stem cells (HSC), which develop 
into pro-B cells, pre-B cells, and immature B cells in the 
bone marrow. Once they exit from the bone marrow, 
these immature cells complete their maturation. These 
mature cells are composed of two peripheral pools of 
follicular or marginal zone B cells 51. Of note, total pe-
ripheral B cell count, which has been associated with 
impaired bone marrow production in the bone marrow, 
progressively decline with aging  52. This phenomenon 
is at least in part dependent on the above-mentioned 
age-associated switching of HSCs from lymphoid- to 
myeloid-biased cells that lead to a reduction in both T 
and B-cells production 32.
In addition, as suggested by Stephan et al. 53,54 an al-
tered function of bone marrow stromal cells (BMSCs) 
and pro-B cells impacts mature B-cells production. 
Indeed, BMSCs produce the IL-7, which is essential for 
the transition of pro-B into pre-B cells, and as dem-
onstrated by these authors, BMSCs from aged mice 
produce less IL-7. In addition, pro-B-cells from aging 
mice appear less responsive to IL-7 signaling.
As demonstrated in aged mice, the residual pools of 
pro-B cells present lowered levels of the surrogate light 
chain (SLC) proteins λ5 and VpreB 55-57. This effect over-
laps with declines in the expression of E47/E2A 56,58-60 

and Early B-cell factor (EBF)  61,62. Both these factors 
regulate the SLC gene expression 63. The reduction in 
SLC causes a loss of pre-B cell receptors (pre-BCR), 
restraining the expansion and development of pre-B 
cells and reducing the production of B cells with normal 
functions 57. 
Moreover, the increased secretion of TNF-α by old fol-
licular B cells  64 yields the apoptosis of SLC+ pro-B 
cells in the bone marrow, consequently leading to the 
accumulation of SLC deficient B cells that inhibit the 
production of immature B cells 65. The signaling path-
ways mentioned above drastically interfere with the de-
velopment of defensive humoral immunity in response 
to infectious pathogens in the aged population.

NK cells

Natural killer (NK) cells are innate lymphoid cells that 
comprise 10~15% of the circulating lymphocyte popu-
lation and play an important role in early defense against 
pathogens and tumor cells 66. These cytotoxic cells can 
be subdivided into different subsets based on the ex-
pression of the surface markers CD16 (also known as 
Fc-gamma receptor [FcγRIIIA]) and CD56 (also known 
as a neural cell adhesion molecule [N-CAM]).
The majority (about 90%) of circulating NK cells have a 
low-density expression of CD56dim that, accordingly to 
Lanier and coworkers, are mature NK cells with higher 
cytotoxic capacity  67. On the contrary, almost 10% of 
NK cells that express CD56bright are more immature and 
secrete cytokines and chemokines, including IFN-γ 68,69. 
With age, there is a progressive decline in the CD56bright 
population and an accumulation of the CD56dim popu-
lation that begins to express CD57 (CD56dimCD57+ 
NK cells) 70. This pool of CD56dimCD57+ cells shows 
high cytolytic capacity but reduced responsiveness 
to cytokines 71. Moreover, impairment of NK cell cyto-
toxicity on a per-cell basis has also been reported  72. 
Importantly, this effect has been partly attributed to the 
decreased expression of the NK protein 30 (NKp30), 
also known as natural cytotoxicity receptor 3 (NCR3 or 
CD337), in elderly individuals 73,74. In centenarians, this 
NK subset maintains well-preserved cytotoxicity, which 
presumably helps this population to achieve advanced 
age in good conditions 75.

Neutrophils

Polymorphonuclear neutrophils (PMNs) play a pivotal 
role in the innate immune system representing one of 
the first lines of defense against pathogens. PMNs 
migrate from the blood to sites of inflammation and 
infection, where they recognize and phagocyte the 
invading microorganisms to kill them via different cy-
totoxic mechanisms, including the generation of reac-
tive oxygen (ROS) and nitrogen (RNS) species and the 
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release of proteases and antimicrobial peptides 76,77. In 
addition, PMNs can form neutrophil extracellular traps 
(NETs) that entrap and kill pathogens via oxidative and 
non-oxidative mechanisms 78. Notably, in the absence 
of specific stimuli, their lifespan is relatively short, how-
ever, pro-inflammatory stimuli like bacterial lipopolysac-
charide (LPS) can significantly raise it  79. Even though 
aging, their number is preserved  80,81, some relevant 
age-related perturbations in neutrophil function, includ-
ing dysfunctional phagocytic and chemotactic abilities, 
have been described 82-84. In this regard, a reduction in 
free radical ROS production by neutrophils has been 
reported in older adults. Importantly, ROS are produced 
after oxidative bursts in phagosomes and are pivot-
ally involved in the microbicidal function of these cells 
via induction of NET formation 85,86. Because of these 
age-related effects on neutrophil function, there is a 
compromised ability of these cells to serve as primary 
responders to infections 84-88. 

Monocytes and macrophages

Like neutrophils, monocytes, and macrophages are 
phagocytic cells critically involved in the innate re-
sponse against infection. Importantly, circulating 
monocytes represent the precursors to tissue-resident 
macrophages that, upon differentiation, act as one of 
the leading cells deputed to host defense in response 
to exogenous agents  89,90. However, several defects 
in monocyte and macrophage function, primarily due 
to cellular signaling dysregulation, have been reported 
with age. Importantly, in monocytes, these defects 
are particularly evident upon TLRs stimulation. For 
instance, Nyugen and coworkers  91 reported that 
monocytes isolated from older individuals exhibited a 
decreased expression of TLR1, resulting in impaired IL-
6 and TNF-α production that negatively impacted the 
phagocytosis activity of these cells. In line with these 
data, Metcalf et al. 92 reported that in response to TLR4 
and TLR7/8 stimulation, human monocytes from adults 
and old subjects showed significant differences at the 
transcriptional and functional levels, not observed in the 
absence of a stimulus. These authors demonstrated 
the impaired production of interferons (IFN-α and -γ), 
IL-1β, and chemokines like CCL20 and CCL8. Of 
note, the basis for part of these age-related defects in 
macrophages has been attributed to an altered expres-
sion of TLRs on the cell membrane of these cells with 
advancing age  93. However, in their report, Boehmer 
and coworkers 94 observed that TLRs expression was 
not impacted in aging macrophages. Therefore, these 
authors suggested that part of the functional defects 
observed in macrophages, like altered cytokine pro-
duction, were mainly related to intracellular signaling. 
Specifically, these authors reported that in response to 

LPS, there was impaired phosphorylation of mitogen-
activated protein kinases (MAPK) like p38 and JNK. 
Despite these controversial results, other reports have 
suggested that defects at the level of TLR expression 
or intracellular signaling appear to be highly related to 
the increased susceptibility to and severity of microbial 
infections in the elderly population 95-98. However, Pat-
tabiraman et al. analyzing the responses elicited by a 
wide array of TLR agonists in distinct populations of 
murine macrophages provided data suggesting that 
extensive changes in TLR responsiveness are not as-
sociated with age. Of note, these authors reported that 
effects seen in response to TLRs stimulation could not 
account in full for the altered inflammatory status and 
cytokine production/release typical of immunosenes-
cent macrophages. Therefore, these studies demand 
more investigations to elucidate the mechanisms re-
sponsible for “macrophaging” 99. In this context, recent 
reports demonstrated that inflammaging could expand 
the content of activated M2-like macrophages that in-
crease the inflammatory status of tissues and express 
several senescence markers. Therefore, this indicates 
that aging in macrophages impacts many processes, 
including TLR signaling, phagocytosis, and polarization.

INFLAMMAGING AND FRAILTY

Immunosenescence and inflammaging represent cru-
cial contributors to age- and frailty-related ailments af-
fecting whole systemic health 100-102. 
Frailty is a complex physiological syndrome charac-
terized by increased susceptibility to stressors and 
reduced physiological reserves that, from a biological 
point of view, is driven by a gradual and lifelong accu-
mulation of molecular defects, including those affecting 
the immune system. 
In this regard, several proofs have corroborated such 
a theory 103. For instance, Leng et al.  104 provided the 
first evidence of a direct link between frailty and inflam-
mation, showing that community-dwelling older frail 
individuals presented with higher serum IL-6 levels than 
non-frail subjects. In addition, the longitudinal InCHI-
ANTI study showed that high levels of inflammatory 
molecules like IL-6, IL-1, and CRP are associated with 
poor overall physical performance and reduced mus-
cle strength 105. In line with this, the Longitudinal Aging 
Study of Amsterdam (LASA) identified CRP as a risk 
factor for frailty 101,106.
Analogously, the Women’s Health and Aging Study 
found that IL-6 levels are higher in frail individuals than 
in non-frail counterparts 107. Finally, the Newcastle 85+ 
study has confirmed the importance of these inflamma-
tory markers in frailty 108. 
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To date, several reports demonstrated that in frail sub-
jects, pro-inflammatory secretion appears to be driven 
by an altered functionality of immune cells (i.e., immu-
nosenescence) in response to a chronic infection. In-
deed, Leng and coworkers 109, showed that peripheral 
blood mononuclear cells (PBMC) from older frail adults, 
after persistent stimulation with bacterial LPS, prolifer-
ated less and augmented the release of pro-inflamma-
tory cytokines. Further, Qu et al. 110 demonstrated that 
monocytes from frail older individuals exposed to LPS 
presented an increased expression of genes encoding 
cytokines and chemokines compared to non-frail coun-
terparts. For their part, Schmaltz et al. 111 demonstrated 
that Cytomegalovirus (CMV) infection was associated 
with physical frailty and that IL-6 enhanced the extent of 
such association. Finally, Kawamura and colleagues 112 
demonstrated that chronic exposure of mice to the 
LPS of Porphyromonas gingivalis (P. gingivalis), one 
of the major pathogenic factors for periodontitis  113,114 

increased muscle atrophy participating in the develop-
ment of physical frailty and sarcopenia. 
Overall, the aforementioned mechanisms support the 
interrelation between the impairment of the functional-
ity of immune cells (immunosenescence), the increased 
incidence and severity of infections observed in older 
subjects, and the impact on frailty 103.

AGING AND PERIODONTITIS

The oral cavity is one of the main portals of entry for 
several microorganisms (bacteria, viruses, and fungi) 
composing the human microbiome 115. The oral micro-
biome, the so-called Oralome, is a fundamental com-
ponent of the human microbiome and is composed of 
approximately 800-1000  microbial species, with oral 
bacteria (commensal and opportunistic) representing 
the main constituents  115,116. Within the mouth, have 
been identified different habitats for oral microorgan-
isms. For instance, it has been calculated that one mil-
liliter of human saliva holds approximately 100 million 
bacterial cells (planktonic free-floating phase). Of note, 
these planktonic species represent the primary source 
of bacteria able to colonize the diverse soft and hard 
surfaces in the oral cavity. In this regard, mucosal sites 
(shedding surfaces) present monolayers of bacteria that 
regularly desquamate, like cheek and palate, or stable 
multilayers of biofilm-like bacteria (tongue) 113. Alterna-
tively, non-shedding ones, including natural and artificial 
teeth, orthodontic appliances, and tooth fillings, are col-
onized by a film of bacteria and sugars (bio-film) 114. Dif-
ferent studies have demonstrated that several external 
factors such as diet, stress, smoke, alcohol, and food 
planes are associated with oral microbiome alteration, 

impacting the stability between commensal and patho-
genic microorganisms forming the dental plaque, thus 
leading to oral disorders like periodontitis  117. Impor-
tantly different bacterial “complexes” that compose this 
biofilm have been identified by Haffajee et al.  118 and 
Socransky and colleagues  119 with progression from 
facultative to anaerobe species finally responsible for 
gingivitis and periodontitis  118-120. In this regard, these 
authors described three main complexes: the green/
yellow complex that comprises mainly streptococci; 
the orange complex, with Fusobacterium nucleatum 
being the most important 121 and the red complex that 
includes the gram-negative periodontal pathogens 
Porphyromonas (P.) gingivalis, Tannerella forsythia, and 
Treponema denticola 113,114. Mechanistically, the dysbio-
sis of periodontal pathogenic bacteria triggers a mas-
sive harmful local immune response. In addition, the 
augmented concentration of bacterial virulence factors, 
such as the LPS, stimulates the production of cytokines 
and inflammatory mediators (e.g., ILs, prostaglan-
din E2 (PGE2) and TNF-α) that contribute to alveolar 
bone reabsorption by osteoclasts  122. Due to gingival 
tissue and bone destruction, oral pathogens and their 
toxic factors spread into the bloodstream (bacteremia), 
leading to systemic inflammation. Therefore, periodon-
titis represents a perfect model of inflammaging with 
chronic infections induced by oral pathogens dysbiosis 
that negatively impacts the health status of the young 
and old population, promoting accelerated aging. In 
this regard, levels of inflammatory mediators, including 
C-reactive protein (CRP), TNF-α, and IL-6, which are 
elevated in periodontitis, represent the linchpin for dis-
orders like diabetes, cardiovascular and neurodegener-
ative diseases development that have been previously 
reviewed by us  113,123. Moreover, it has been recently 
suggested that periodontal disease is a risk factor for 
complications of SARS-CoV-2 infection 124,125. 
Importantly, a healthy immune system can prevent and 
tolerate the occurrence of constant acute inflammatory 
reactions despite a great oral microbial load. However, 
defects in host immunoregulation, like those observed 
with aging, are the major mechanism contributing to 
periodontitis. Indeed, several reports demonstrated 
the strict correlation between immunosenescence and 
periodontitis. For instance, Bodineau and colleagues 126 
reported a substantial reduction in the ratio of gingival 
CD4+lymphocyte subset when comparing older with 
younger patients with chronic periodontitis. On the 
other hand, Clark et al. 127 analyzed the effects of ag-
ing on macrophages and reported that the age-related 
alteration in macrophages’ function is responsible for 
the higher prevalence of this disorder and reduced 
recovery in old individuals compared to their younger 
counterparts. Along the same lines, a study from Liang 
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et al. 128, examining young and old macrophages under 
resting conditions or following infection with P. gingivalis 
demonstrated that aged macrophages presented with 
elevated expression of surface receptors that amplify 
inflammation, like the triggering receptor expressed on 
myeloid cells (TREM]-1) and the C5a anaphylatoxin 
receptor (C5aR). Interestingly, P. gingivalis, through 
direct activation of C5aR, disarms and subverts host 
immunity, further supporting the possibility that immu-
nosenescence can contribute to the persistence of mi-
crobial communities that drive dysbiotic disorders and 
increase the susceptibility to infections 129. 

THE IMPORTANCE OF ORAL HEALTH IN OLDER 
PERSONS

The presence of periodontitis affects human health in 
two ways: the spreading of bacteria into the blood-
stream and inflammaging. These motivations represent 
an additional reason not to neglect the periodontal state 
of the elderly and to push national systems toward a 
periodontitis prevention campaign for the whole popu-
lation. Indeed, among the interventions to prevent and 
decrease infections in older adults, emerging evidence 
demonstrated that the treatment of periodontitis is ef-
ficient in positively impacting general health 130. 
In this context, the standard treatment is to control 
the infection, thus preventing local inflammation. This 
effect can be achieved by removing the plaque by pro-
fessional supra and subgingival debridement, rigorous 
home dental care, and correcting bone defects caused 
by periodontitis by employing periodontal regenerative 
surgery 131. Currently, regenerative periodontal therapy 
is conducted by eliminating pathogens and applying 
biomaterials. However, recent studies support the us-
age of Human dental pulp stem cells (hDPSCs), one 
of the readily available sources of multipotent mesen-
chymal stem cells (MSCs), positively impacting not only 
the regeneration of periodontium (via a natural process) 
but resolving the infection and then inflammation thanks 
to their immunomodulatory role 131,132. Therefore, peri-
odontal treatment represents a valid strategy to coun-
teract the adverse effects of the inflammaging triggered 
by oral dysbiosis. For instance, several studies demon-
strated to positive effects of periodontal treatment on 
endothelial dysfunction 133-136. This conditionoccurs dur-
ing the aging process and is related to oxidative stress 
and vascular inflammation  137, and several pre-clinical 
and clinical studies have found a direct association with 
periodontitis. For instance, P. gingivalis can increase 
the endothelial monocyte chemoattractant protein-1 
(MCP-1) expression and induce a rise in endothelin-1 
levels and release 138,139. Notably, in these studies, it has 

been demonstrated that periodontal treatment resulted 
in benefits in oral health that were accompanied with 
improvement in endothelial function and a reduction of 
circulating inflammatory markers. Beneficial effects as-
sociated with periodontal treatment were also observed 
in patients with type 2 diabetes 140,141 and rheumatoid 
arthritis 142. Notably, these disorders, whose incidence 
increases with age 143,144, have been directly associated 
with periodontitis, also in a bidirectional manner 113,123,145 
and interestingly, it has been suggested that both these 
disorders can develop because of premature aging (im-
munosenescence) of the immune system 144,146. 
Further, a recent study from Schwahn and coworkers 147 
reported that periodontal treatment had a favorable ef-
fect on Alzheimer’s disease, the most prevalent form 
of dementia in the elderly, reducing brain atrophy. In 
this regard, we have previously reported a bidirectional 
link between Alzheimer’s disease and periodontitis 123. 
Indeed, while oral pathogens’ dysbiosis and their toxic 
proteins represent a severe risk factor for neurodegen-
eration and neuroinflammation, the decline of cognitive 
functions in Alzheimer’s disease patients negatively 
impacts proper oral hygiene practices, thus favoring 
periodontitis and tooth loss.
On the same premise, recent findings suggest that 
improvement in oral health contributes to the preven-
tion of Sarcopenia, a typical syndrome of old individuals 
characterized by a significant loss of muscle mass and 
function  148. In this regard, Han et al.  149, in a cross-
sectional study, reported that periodontitis was sig-
nificantly associated with Sarcopenia. In line with this 
study, Abe et al. 148 reported that improving oral health 
among community-dwelling older adults contributes to 
preventing Sarcopenia and Diabetes. Although experi-
mental evidence concerning the correlation between 
periodontitis and Sarcopenia is limited to date, studies 
like the one by Kawamura et al.  112, discussed above 
support such relationship.

CONCLUSIVE REMARKS

This narrative Review article aimed to condense the 
current knowledge regarding the bidirectional associa-
tion between oral health and healthy aging (Fig. 1). As 
discussed, immunosenescence is a major cause of 
augmented incidence and severity of pathogens infec-
tions, consequently leading to inflammaging in a vicious 
cycle that fuels itself with age. In this regard, we fo-
cused on periodontitis, a chronic inflammatory disease 
with high incidence in the elderly, that is characterized 
by a dysbiosis of pathogenic bacteria that stimulate a 
local and systemic inflammation representing the best 
example of a noxious age-related process that worsens 
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if untreated. Therefore, adequate countermeasures 
aiming at counteracting the adverse effects of oral 
dysbiosis on systemic health should be implemented 
at an early age in line with the idea that “prevention 
is better than cure”. Of note, nutritional interventions, 
amelioration of social conditions, and correct lifestyle 
are undoubtedly considered optimal strategies to 
prevent oral disorders, given that proper oral hygiene 
exists. Thus, oral health status may be a predictor of 
longevity, and this hypothesis has been supported by 
recent studies showing centenarians had a lower rate 
of edentulism and prevalence of severe periodontal 
disease than their younger counterparts  150,151. For all 
these reasons, several initiatives have been activated 
with which the Italian Society of Gerontology and 
Geriatrics (SIGG) should associate itself, like the one 
recently launched by The Gerontological Society of 
America called “Oral Health An Essential Element of 
Healthy Aging” (https://www.geron.org/programs-ser-
vices/alliances-and-multi-stakeholder-collaborations/

oral-health-an-essential-element-of-healthy-aging). 
This program has the goals of supporting older adults 
to keep their oral health as part of a healthy aging pro-
cess and to help researchers, practitioners, educators, 
and policymakers to identify areas of research/activity 
on the subject of “oral health in older adults”.
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Figure 1. Schematic representation summarizing the relationship between immunosenescence and periodontal disease and their 
effects on the development and progression of age-related disorders. As age progress, immunosenescence negatively impact on 
immune cells functionality and number thus augmenting the incidence and severity of oral pathogens dysbiosis and infection with 
consequent local and systemic inflammation thus fueling the inflammaging process. Red arrows indicate reduced.Green arrows 
indicate increased. 
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